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Allstrad-Thrce methods are presented by which the restrictions on the strain-ener1Y density for
an elastic material due to material frame indifference can be introduced. It is seen that one of these,
which is extensively repeated in the secondary literature, contains a logical fallacy.

1. INTRODUcnON

In an elastic material which undergoes isothermal deformations the Helmholtz free energy
per unit mass, or strain-energy density, is a function of the deformation gradient matrix
only. It was shown by Green[l] in 1838 that it must depend on the latter through the six
independent elements of the Cauchy strain matrix. Green's simple argument is outlined in
section 2. Since that time a numberofother arguments which lead to the same result have
been advanced. One of these is also given in Section 2.

In 1960 Truesdell[2] presented an argument, attributing it to Noll, which is superficially
more attractive than the arguments previously given and has been repeated in the secondary
literature by many authors, including one of the authors (R.S.R.) of this note.

Truesdell's argument has the additional attraction that it can be used to introduce into
constitutive equations of the functional type the restriction implied by so-called material
frame indifference on the manner in which the constitutive functional depends on the
deformation gradient matrix history. Indeed it is in this context that the argument was
advanced by Noll[3]. In Section 3 we draw attention to a logical fallacy in Truesdell's
argument.

In the context of the present discussion, material frame indifference states that the
strain-energy density W is independent of the choice of the rectangular coordinate system
in which the deformed configuration is described. This is mathematically equivalent, again
in the context ofthe present discussion, to the assumption that Wis unaltered ifan arbitrary
rotation is superposed on the assumed deformation. It is in this sense that we interpret it
in the present paper. We ignore the point, as irrelevant to the present discussion, that
strictly material frame indifference allows the coordinate systems in which the deformed
configuration is described to be either left-handed or right-handed.

2. TWO CORRECT ARGUMENTS

We consider an elastic material to undergo an isothermal deformation in which a
particle P which initially has vector position X with respect to a fixed origin 0 moves to
vector position x with respect to the same origin. Let XA (A = 1,2,3) and X, (i = 1,2,3) be
the components ofX and x, respectively, in a fixed rectangular Cartesian coordinate system
X with origin at O. The deformation gradient matrix g is defined by

(I)

Let W be the Helmholtz free energy per unit mass. Since the material is elastic W is a
function ofg only

w= F(g). (2)

We now superpose on the assumed deformation an arbitrary rigid rotation, as a result
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of which the particle P moves to vector position x= QX, where Q is a proper orthogonal
matrix. Let g be the deformation gradient matrix for the resultant deformation

g= II gil. II = lIo.idoXA II· (3)

The Helmholtz free energy per unit mass, W, for the deformation X ~ i is then given by

W= F(g) = F(Qg). (4)

Since the Helmholtz free energy is unaltered by the superposed rotation W = Wand
hence, from eqns (2) and (4), the function Fmust satisfy the relation

F(g) = F(Qg) (5)

for all proper orthogonal Q. The restriction on the form of F implied by eqn (5) may be
made explicit in the following manner.

Let g I> &2' &3 denote the first, second, and third columns of the matrix I. Then, we
may write

(6)

With this definition of i, eqn (5) becomes

(7)

Equation (7) states that i, and hence W, is a scalar invariant of the three vectors 1 J, 12, &3
under the proper orthogonal group. It must therefore be expressible as a function of the
elements of a function basis for the three vectors &1> &2, &3 under the proper orthogonal
group. Such a basis is provided by the six inner products

(8)

where

(9)

is the Cauchy strain matrix, and the scalar triple product

(10)

We note that

(11)

Since for a deformation which is possible in a real material

(12)

it follows that

(13)

We conclude that i and hence W must be expressible as a function of the matrix C
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Since from eqns (8) and (9)

where the dagger denotes the transpose, and

1641

(14)

(IS)

(16)

for all proper orthogonal Q, it follows from eqns (6) and (14) that if F(g) has the form

F(g) = G(C) (17)

it satisfies condition (5).
Equation (14) was first obtained by Green[I] by the following argument. A material

element which initially has the form of a cuboid with its edges parallel to the axes of a
rectangular Cartesian coordinate system x becomes, as a result of the deformation, an
elementary parallelepiped. The ratios between the lengths of corresponding edges of the
material element in the deformed and undeformed configurations and the angles between
the edges in the deformed configuration are fully determined by CAB' These six quantities
fully describe the distortion which the material element undergoes in the deformation and
are independent of the orientation of the material element in the deformed configuration.
It follows that W is determined by C.

3. AN INCORRECT ARGUMENT

Truesdell[2] has purported to reach the conclusions of the previous section by the
following argument, which he attributes to Noll.

The Polar Decomposition Theorem enables us to decompose the deformation gradient
matrix g in the form

g=RU (18)

where R is a proper orthogonal matrix and U is a positive definite symmetric matrix. Then
taking Q =R' in eqn (5) Truesdell obtains, with eqn (18)

F(g) = F(U).

Since the polar decomposition of Qg is

Qg= (QR)U

it follows that

F(Qg) = F(U)

and hence, from eqns (19) and (21), so it is argued, the relation (cf. eqn (5))

F(g) = F(Qg)

is satisfied by any function ofU.
It is then maintained from eqn (18) that

(19)

(20)

(21)

(22)
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(23)

Since U is positive definite, it is uniquely determined by C and hence W must be expressible
in the form (cf. eqn (14»

w= G(C). (24)

The fallacy in Truesdell's argument may easily be seen from eqn (19). While it is true
that any function F(g) which satisfies eqn (5) must also satisfy eqn (19), it is not true that
any F(U) satisfies eqn (5). If it did it would also have to satisfy eqn (19). From eqn (18)
U = Rtg and it is evidently not true that any function ofRtg is the same function of g.

If eqn (5) is satisfied for all proper orthogonal Q, then

F(g) = F(Qg) = F(PQg)

for all proper orthogonal P. Then, taking Q = Rt we obtain, :with eqn (18)

F(U) =F(pU)

(25)

(26)

for all proper orthogonal P. Plainly, not all functions of U satisfy this relation. To find
those that do we can parallel the argument in Section 2 to obtain the result that F(U) must
be expressible in the form

(27)

It is easily seen from eqn (18) that

(28)

and we obtain immediately eqn (24).
We note further that in his argument Truesdell uses the matrix U in two slightly

different senses. To see this we use indicial notation. Then eqn (18) may be written either
as

(29)

or

(30)

where, of course

(31)

If eqn (19) is to have any meaning U = II VjAl1 and eqn (19) becomes, in indicial notation

(32)

On the other hand if U is the positive definite symmetric matrix in the polar decomposition
ofg, then U = II VAsil. While II VjA II and IIUAsil are numerically equal, they behave differently
under the replacement x ~ Qx. In the notation of Schouten[4]

(33)

While II VAsil is unchanged, II VIAll becomes IIQijVjA Ii.



A note on material indifference

REFERENCES

1643

I. G. Green, On the laws of reftexion and refraction of light at the common surface of two non-crysta1lised media.
TrfIJU. Cttmb. PIUJ. Soc. 7, I (1838).

2. C. Truadell, Principles of continuum mechanics. Socony Mobil Colloquium Lectures in Pure and Applied
Science, No. S(1960).

3. W. Noll, A mathematical theory of the mechanical behavior ofcontinuous media. Archs Ration. Mech. Analysis
2, 197 (1958).

4. J. A. Schouten, Tensor Analysis for Physicists, p. 15. Oarendon Press, Oxford (1954).


